Versatile Virtual Materials Using Implicit Connectivity

نویسندگان

  • Martin Wicke
  • Philipp Hatt
  • Mark Pauly
  • Matthias Müller
  • Markus H. Gross
چکیده

We propose a new method for strain computation in mesh-free simulations. Without storing connectivity information, we compute strain using local rest states that are implicitly defined by the current system configuration. Particles in the simulation are subject to restoring forces arranging them in a locally defined lattice. The orientation of the lattice is found using local shape matching techniques. The strain state of each particle can then be computed by comparing the actual positions of the neighboring particles to their assigned lattice positions. All necessary information needed to compute strains is contained in the current state of the simulation, no rest state or connectivity information is stored. Since no time integration is used to compute the strain state, errors cannot accumulate, and the method is well-suited for stiff materials. In order to simulate phase transitions, the strain computation can be integrated into an existing particle-based fluid simulation framework. Implementing phase transitions between liquid and solid states becomes simple and elegant, since no transfer of material between different representations is needed. Using the current neighborhood relationships, the model provides penalty-based inter-object and self-collision handling at no additional computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Interactive Animation of Cloth-like Objects for Virtual Reality

In this chapter, we propose a stable and efficient algorithm for animating cloth-like materials using mass-spring systems. An integration scheme derived from implicit integration allows us to obtain interactive realistic animation of any mass-spring network. We alleviate the need to solve a linear system through the use of a predictor-corrector approach: We first compute a rapid approximation o...

متن کامل

The Virtual Trial

Although brain network analysis in neurodegenerative disease is still a fairly young discipline, expectations are high. The robust theoretical basis, the straightforward detection and explanation of otherwise intangible complex system phenomena, and the correlations of network features with pathology and cognitive status are qualities that show the potential power of this new instrument. We exp...

متن کامل

Brain Networks of Explicit and Implicit Learning

Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences. Using effective connect...

متن کامل

Interaction mining and skill-dependent recommendations for multi-objective team composition

Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006